A brief study of Nox 4 inhibitors in diabetic nephropathy

Navneet O. Soni


The purpose of the study was to find the merits and demerits of NADPH oxidase 4 (Nox 4) inhibitors. Nox inhibitors are tested from natural sources like green tea, plumbagin, Chinese formulas like Baoshenfang, Cudrania tricuspidata, Huangqi decoction and synthetic dual Nox inhibitors. Some of them activate and regulate AMP-activated protein kinase (AMPK). Some chunk the high glucose activated alleyway, dawdling the succession of diabetic nephropathy (DN). Overall, the benefits of NOX are: reducing oxidative damage, improving renal function, reducing podocyte injury, preventing interstitial fibrosis, regulating AMPK which inhibits reactive oxygen species (ROS) and transforming growth factor-beta (TGF-beta), decreasing inflammation due to high glucose, protecting mesangial cells, decreasing collagen synthesis, and reducing glomerular hypertrophy. While targeting NOX in renal impairment, off-target effects, especially cardiovascular effects, are one of the major hurdles since diabetes mellitus (DM) is associated with co-morbid cardiovascular problems.


Diabetic nephropathy, NADPH oxidase, NOX 4, Oxidative stress

Full Text:



Piero MN, Nzaro GM, Njagi JM. Diabetes mellitus-a devastating metabolic disorder. Asian J Biomed Pharm Sci. 2015;5(40):1.

World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. 1999. Available at: /10665/66040. Accessed on 12 July 2021.

Wingard DL, Barrett-Connor E. Heart disease and diabetes. Diabetes in America. 1995;2(1):429-48.

Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003;108(12):1527-32.

Rudnisky CJ, Tennant MT, Johnson JA, Balko SU. Diabetes and eye disease in Alberta. Alberta diabetes atlas. 2011;141-62.

Koye DN, Magliano DJ, Nelson RG, Pavkov ME. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis. 2018;25(2):121-32.

Jakobsen J. Peripheral nerves in early experimental diabetes. Diabetologia. 1978;14(2):113-9.

Bullard KM, Cowie CC, Lessem SE, Saydah SH, Menke A, Geiss LS, Orchard TJ, Rolka DB, Imperatore G. Prevalence of diagnosed diabetes in adults by diabetes type—United States, 2016. Morb Mort Wkly Rep. 2018;67(12):359.

Meneilly GS, Tessier D. Diabetes in elderly adults. J Gerontol Series. 2001;56(1):5-13.

Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med. 2006;119(5):10-6.

Wallace TM, Matthews DR. The assessment of insulin resistance in man. Diabet Med. 2002;19(7):527-34.

Chan C, Harper ME. Uncoupling proteins: role in insulin resistance and insulin insufficiency. Curr Diabet Rev. 2006;2(3):271-83.

Khan MA, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. J Epidemiol Global Health. 2020;10(1):107.

Kaiser AB, Zhang N, Van Der Pluijm W. Global prevalence of type 2 diabetes over the next ten years (2018-2028). Diabetes. 2018;67(1).

Cooke DW, Plotnick L. Type 1 diabetes mellitus in pediatrics. Pediatr Rev. 2008;29(11):374-84.

Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Å. Type 1 diabetes mellitus. Nature Rev Dis Primers. 2017;3(1):1-7.

Steele C, Hagopian WA, Gitelman S, Masharani U, Cavaghan M, Rother KI, et al. Insulin secretion in type 1 diabetes. Diabetes. 2004;53(2):426-33.

Dall TM, Zhang Y, Chen YJ, Quick WW, Yang WG, Fogli J. The economic burden of diabetes. Health Affairs. 2010;29(2):297-303.

Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Bärnighausen T, Vollmer S. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabet Endocrinol. 2017;5(6):423-30.

Valdmanis V, Smith DW, Page MR. Productivity and economic burden associated with diabetes. Am J Public Health. 2001;91(1):129.

Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientific Rep. 2020;10(1):1-1.

World Health Organization. Diabetes. Available at: 1. Accessed on 24 June 2021.

Martínez-Castelao A, Navarro-González JF, Górriz JL, De Alvaro F. The concept and the epidemiology of diabetic nephropathy have changed in recent years. J Clin Med. 2015;4(6):1207-16.

Quijano C, Trujillo M, Castro L, Trostchansky A. Interplay between oxidant species and energy metabolism. Redox Biol. 2016;8:28-42.

Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxidants & redox signaling. 2016;25(3):119-46.

Maestroni S, Zerbini G. Glomerular endothelial cells versus podocytes as the cellular target in diabetic nephropathy. Acta diabetologica. 2018;55(11):1105-11.

Singh A, Ramnath RD, Foster RR, Wylie EC, Fridén V, Dasgupta I, Haraldsson B, Welsh GI, Mathieson PW, Satchell SC. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PloS one. 2013;8(2):e55852.

Sedeek M, Nasrallah R, Touyz RM, Hébert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol. 2013;24(10):1512-8.

Lee SR, An EJ, Kim J, Bae YS. Function of NADPH oxidases in diabetic nephropathy and development of nox inhibitors. Biomol Therap. 2020;28(1):25.

Augsburger F, Filippova A, Rasti D, Seredenina T, Lam M, Maghzal G, et al. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol. 2019;26:101272.

Elbatreek MH, Mucke H, Schmidt HH. NOX inhibitors: from bench to naxibs to bedside. Handb Exp Pharmacol. 2021;264:145-68.

Rastogi R, Geng X, Li F, Ding Y. NOX activation by subunit interaction and underlying mechanisms in disease. Front Cellular Neurosci. 2017;10:301.

Zielonka J, Zielonka M, Cheng G, Hardy M, Kalyanaraman B. High-throughput screening of NOX inhibitors. NADPH Oxidases. Humana, New York, NY. 2019;429-46.

Laddha AP, Kulkarni YA. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications. Eur J Pharmacol. 2020;881:173206.

Reis J, Massari M, Marchese S, Ceccon M, Aalbers FS, Corana F, et al. A closer look into NADPH oxidase inhibitors: Validation and insight into their mechanism of action. Redox Biol. 2020;32:101466.

Urner S, Ho F, Jha JC, Ziegler D, Jandeleit-Dahm K. NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications. Antioxidants & redox signaling. 2020;33(6):415-34.

Zhang J, Yang S, Li H, Chen F, Shi J. Naringin ameliorates diabetic nephropathy by inhibiting NADPH oxidase 4. European journal of pharmacology. 2017;804:1-6.

Papadimitriou A, Peixoto EB, Silva KC, de Faria JM, de Faria JB. Increase in AMPK brought about by cocoa is renoprotective in experimental diabetes mellitus by reducing NOX4/TGFβ-1 signaling. J Nutritional Biochem. 2014;25(7):773-84.

Zhou G, Cheung AK, Liu X, Huang Y. Valsartan slows the progression of diabetic nephropathy in db/db mice via a reduction in podocyte injury, and renal oxidative stress and inflammation. Clin Sci. 2014;126(10):707-20.

Cui Y, Shi Y, Bao Y, Wang S, Hua Q, Liu Y. Zingerone attenuates diabetic nephropathy through inhibition of nicotinamide adenine dinucleotide phosphate oxidase 4. Biomed Pharmacotherap. 2018;99:422-30.

Li X, Cai W, Lee K, Liu B, Deng Y, Chen Y, Zhang X, He JC, Zhong Y. Puerarin attenuates diabetic kidney injury through the suppression of NOX4 expression in podocytes. Scientific Rep. 2017;7(1):1-1.

Kim D, Cheon J, Yoon H, Jun HS. Cudrania tricuspidata Root Extract Prevents Methylglyoxal-Induced Inflammation and Oxidative Stress via Regulation of the PKC-NOX4 Pathway in Human Kidney Cells. Oxidative medicine and cellular longevity. 2021.

Li Z, Deng W, Cao A, Zang Y, Wang Y, Wang H, Wang L, Peng W. Huangqi decoction inhibits hyperglycemia-induced podocyte apoptosis by down-regulated Nox4/p53/Bax signaling in vitro and in vivo. Am J Transl Res. 2019;11(5):3195.

Chen Z, Gao H, Wang L, Ma X, Tian L, Zhao W, et al. Farrerol alleviates high glucose-induced renal mesangial cell injury through the ROS/Nox4/ERK1/2 pathway. Chemico-biological interactions. 2020;316:108921.

Rajaram RD, Dissard R, Jaquet V, de Seigneux S. Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system. Nephrology Dialysis Transplantation. 2019;34(4):567-76.

Soni NO. Drugs for Diabetic Nephropathy-full review. World J Pharm Pharmaceutical Sci. 2017;6(7):1958-2022.

Soni NO. Embryonic life of HDACs inhibitor-in diabetic nephropathy. World J Pharm Pharmaceutical Sci. 2017;6:345-59.

Soni NO. TRPC 6 as a Molecular Target in Diabetic Nephropathy. Int J Life Sci Scienti Res. 2017;3(5):1311-4.

Soni NO. Resveratrol nanoparticle's formulation-in diabetic nephropathy. World J Pharm Pharmaceutical Sci. 2017;368-86.

Soni NO. Biodegradable Nanoparticles for Delivering Drugs and Silencing Multiple Genes or Gene activation in Diabetic Nephropathy. Int J Life Sci Scienti Res. 2017;3(5):1329-38.

Soni NO. Targeting DNA methyl transferase 1 [dnmt1]-in diabetic nephropathy. World J Pharm Pharmaceutical Sci. 2017;6(9):333-38.

Soni NO. Monaschin and ankaflavin-in diabetic nephropathy? World J Pharm Pharmaceutical Sci. 2017;6(9):327-32.

Soni NO, Pawar SV, Kale S, Mane UA, Bhosale PU, Phandhare K, Bhosale PR, Patil SA. Peroxisome proliferator-activated receptors and thiazolidinediones in diabetic nephropathy. Int J Basic Clin Pharmacol. 2019;8(10):2344.

Soni NO. NADPH oxidase is novel drug in diabetic nephropathy. World J Pharm Pharmaceutical Sci. 2017;6:765-5.

Soni NO. TGF-'Inhibitors Are Novel Drugs-In Diabetic Nephropathy a Review. World J Pharm Pharmaceutical Sci. 2017;622-45.

Soni NO. Recombinant complement inhibitor CD59–in diabetic nephropathy. World J Pharm Pharmaceutical Sci. 2017;6(7):2056-60.

Soni NO. Fructokinase inhibitors–in diabetic nephropathy. World J Pharm Pharmaceutical Sci. 2017;6(7):339-44.