DOI: http://dx.doi.org/10.18203/2319-2003.ijbcp20212390

Biomaterial implants in the treatment of oncology: a review

Saba Maanvizhi, Vijayakumar Arumugam Ramamurthy, Athithan Velan, Pugazhenthan Thangaraju

Abstract


In globally, cancer is a second leading disease next to cardiovascular diseases in non-communicable diseases, which affect the all ages, sex, social status, ethnicity and primary cause of illness related death. Traditionally, systemic delivery drug systems like chemotherapy via oral capsule, injections of nanoparticles/micro particles, immunotherapy and others, which can inhibit or halt the progression of tumors. The short half-life of drugs which cannot achieve the targeted dose level to the tumor site and not able to target desired cell and commonly produces the organ toxicity. Recently, researchers have been attempting to direct delivery agents for cancer therapy. One of the best methods is a local therapy system, which deliver the drug directly via implantable procedure and it’s achieved the maximum concentration of the desire drug at the tumor site, non-target systemic exposure and minimize the organ toxicity to the patients. Biomaterial implants are widely used in the local concurrent delivery of chemotherapy and anti-angiogenic agents, local delivery of poly-chemotherapy, gene therapy as an alternative to drug delivery, scaffolds for cancer immunotherapy and polymer-based composites of drug molecules. There are different types of polymers like poly anhydride poly [bis (p-carboxy-phenoxy) propane-sebacic acid] copolymer [p(CPP:SA)], fatty acid dimer-sebacic acid copolymer (FAD-SA), poly (lactic-co-glycolic acid) copolymer (PLGA), poly (ε-caprolactone) (PCL), poly (glycerol monostearate-co-caprolactone), alginate and silica, used in successively cancer therapy. In order to minimize the risk of unwanted side effect of different types of biomaterials implants, it’s biocompatible to reduce the ability to elicit the inflammatory effect to the implanted area or the site. Therefore, the key role of choosing the appropriate and biocompatible implants to particular therapy is an indispensable. This should be validated with respect to risk benefit ratio in case of cancers. Biomaterial based implant local delivery systems provide more versatile and tailorable approach to against treatment of different types of the cancer.


Keywords


Adverse reactions, Biomaterials, Cancer, Hazard, Implants, Alginate, Silica

Full Text:

PDF

References


Report of National Cancer Registry Programme 2020. 2020. https://www.ncdirindia.org/All_Reports/ Report_2020/default.aspx. Accessed on 2 November 2020.

Type of cancer treatment. National Cancer Institute. https://www.cancer.gov/aboutcancer/treatment/types. Accessed on 2 November 2020.

Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714-26.

Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91:1071-121.

Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, et al. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res.2012;18:3229-41.

Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation--a new cutting edge. Nat Rev Cance. 2013;13:653-62.

https://www.nibib.nih.gov/science-education/science-topics/biomaterials. Accessed on 12 November 2020.

Kulinets I. Biomaterials and their applications in medicine. Elsevier, Amsterdam, Netherlands. 2015.

Kasprzak KS, Sunderman FW Jr, Salnikow K. Nickel carcinogenesis. Mutat Res. 2003;533:67-97.

Marijnissen WJ, van Osch GJ, Aigner J, van der Veen SW, Hollander AP, Verwoerd-Verhoef HL et al. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials. 2002;23:1511-17.

Park H, Choi B, Hu J, Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 2013;9:4779-86.

Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221:1- 22.

Fournier E, Passirani C, Montero-Menei CN, Benoit JP. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials. 2001;24:3311-31.

Poole-Warren L, Martens P, Green R. Biosynthetic Polymers for Medical Applications. Elsevier, Amsterdam. 2016.

Wang Z, Li N, Li R, Li Y, Ruan L. Biodegradable intestinal stents: A review. Progress Nat Sci Mater Int. 2014;24:423-32.

Walter KA, Cahan MA, Gur A, Tyler B, Hilton J, Colvin OM, et al. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 1994;54:2207-12.

Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003;5:79-88.

Kleinberg LR, Weingart J, Burger P, Carson K, Grossman SA, Li K, et al. Clinical course and pathologic findings after Gliadel and radiotherapy for newly diagnosed malignant glioma: implications for patient management. Cancer Invest. 2004;22:1-9.

Dang W, Daviau T, Brem H. Morphological characterization of polyanhydride biodegradable implant Gliadel® during in vitro and in vivo erosion using scanning electron microscopy. Pharm Res. 1996;13:683-91.

Leach KJ, Mathiowitz E. Degradation of double-walled polymer microspheres of PLLA and P (CPP:SA)20:80. I. In vitro degradation. Biomaterials. 1998;19:1973-80.

Göpferich A, Tessmar J. Polyanhydride degradation and erosion. Adv Drug Deliv Rev. 2002;54:911-31.

Khatri K, Goyal AK, Vyas SP. Potential of nanocarriers in genetic immunization. Recent Pat Drug Deliv Formul. 2008;2:68-82.

Horton CE, Adamson JE, Mladick RA, Carraway JH. Vicryl synthetic absorbable sutures. Am Surg. 1974;40:729-31.

Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;7:247-89.

Chaubal M. Polylactides/ glycolides – excipients for injectable drug delivery and beyond. Drug Deliv Tech. 2002;2:34-36.

Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev. 2008;60:229-42.

Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2004;97:2395-404.

Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, et al. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release. 2014;183:77-86.

Parent M, Nouvel C, Koerber M, Sapin A, Maincent P, Boudier A. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J Control Release. 2013;172:292-304.

Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co- glycolide) (PLGA) devices. Biomaterials. 2000;21:2475-90.

Habraken WJ, Wolke JG, Mikos AG, Jansen JA. Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics. J Biomater Sci Polym Ed. 2006;17:1057-74.

Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38:3484-504.

Kariduraganavar MY, Kittur AA, Kamble RR. Polymer Synthesis and Processing. In: Kumbar S, Laurencin CT, Deng M (ed). Natural and Synthetic Biomedical Polymers, 1st edn. Elsevier Science, Boston. 2014;1-31.

Hoskins JN, Grayson SM. Synthesis and degradation behavior of cyclic poly (ε-caprolactone). Macromolecules. 2009;42:6406-13.

Azimi B, Nourpanah P, Rabiee M, Arbab S. Poly (ε-caprolactone) fiber: An overview. J Engineered Fibers Fabrics. 2014;9:74-90.

Sezer UA, Aksoy EA, Hasirci V, Hasirci N. Poly (ε-caprolactone) composites containing gentamicin-loaded β-tricalcium phosphate/ gelatin microspheres as bone tissue supports. J Appl Polym Sci. 2012;127:1-8.

Sezer UA, Arslantunali D, Aksoy EA, Hasirci V, Hasirci N. Poly (ε-caprolactone) composite scaffolds loaded with gentamicin-containing β-tricalcium phosphate/gelatin microspher es for bone tissue engineering applications, J Appl Polym Sci. 2014;131:1-11.

Hernán Pérez de la Ossa D, Ligresti A, Gil-Alegre ME, Aberturas MR, Molpeceres J, Di Marzo V, et al. Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: development, characterization and in vitro evaluation of their antitumoral efficacy. J Control Release. 2012;161:927-32.

Tong SY, Wang Z, Lim PN, Wang W, Thian ES. Uniformly-dispersed nanohydroxapatite- reinforced poly (ε-caprolactone) composite films for tendon tissue engineering application. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 2):1149-55.

Mark HF. Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc., New Jersey. 2014.

Díaz E, Sandonis I, Valle MB. In vitro degradation of poly (ε-caprolactone)/ nHA composites. J Nanomaterials. 2014:1-8.

Gleadall A, Pan J, Kruft MA, Kellomäki M. Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomater. 2014;10:2223-23.

Gleadall A, Pan J, Kruft MA, Kellomäki M. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer. Acta Biomater. 2014;10:2233-40.

Hernández AR, Contreras OC, Acevedo JC, Moreno LGN. Poly (ε-caprolactone) degradation under acidic and alkaline conditions. Am J Polym Sci3:70-75, 2013.

Xu FJ, Wang ZH, Yang WT. Surface functionalization of polycaprolactone films via surface- initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials. 2010;31:3139-47.

Wang X, Wang Y, Wei K, Zhao N, Zhang S, Chen J. Drug distribution within poly (ε- caprolactone) microspheres and in vitro release. J Mater Process Technol. 2009;209:348-54.

Wolinsky JB, Ray WC, Colson YL, Grinstaff MW. Poly (carbonate ester)s Based on units of 6- hydroxyhexanoic acid and glycerol. Macromolecules. 2007;40:7065-8.

Wolinsky JB, Liu R, Walpole J, Chirieac LR, Colson YL, Grinstaff MW. Prevention of in vivo lung tumor growth by prolonged local delivery of hydroxycamptothecin using poly(ester-carbonate)- collagen composites. J Control Release. 2010;144:280-7.

Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106-26.

Draget KI, Smidsrod O, Skjak-Braek G. Alginates from algae. In: Steinbuchel EA, Rhee SK (ed) Polysaccharides and Polyamides in the Food Industry: Properties, Production and Patents. Wiley- VCH Verlach GmbH, Weinheim, Germany. 2005;1-30.

Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28:621-30.

Draget KI, Stokke BT, Yuguchi Y, Urakawa H, Kajiwara K. Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 3. Alginic Acid Gels. Biomacromolecules. 2003;4:1661-68.

Inukai, M, Yonese M. Effects of charge density on drug permeability through alignate gel membranes. Chem Pharm Bull. 1999;47:1059-63.

Ching SH, Bansal N, Bhandari B. Alginate gel particles-A review of production techniques and physical properties. Crit Rev Food Sci Nutr. 2017;57:1133-52.

Cardoso MJ, Costa RR, Mano JF. Marine Origin Polysaccharides in Drug Delivery Systems. Mar Drugs. 2016;14:34.

Machida-Sano I, Matsuda Y, Namiki H. A novel harvesting method for cultured cells using iron- cross-linked alginate films as culture substrates. Biotech Appl Biochem. 2010;55:1-8.

Bergna H, Roberts W. Colloidal Silica. Boca Raton: CRC Pres., 2005.

Canham LT, Reeves CL, King DO, Branfield PJ, Crabb JG, Ward CL. Bioactive polycrystalline silicon. Adv Mater. 1996;8:850-2.

McInnes S, Graney S, Khung YL, Voelcker NH. Porous silicon microparticles as an alternative support for solid phase DNA synthesis. Proc. SPIE. 2006;6036:445-54.

Meade SO, Sailor MJ. Microfabrication of freestanding porous silicon particles containing spectral barcodes. Phys Stat Sol (RRL). 2007;1:R71-3.

Wu EC, Park JH, Park J, Segal E, Cunin F, Sailor MJ. Oxidation-triggered release of fluorescent molecules ordrugs from mesoporous Si microparticles. ACS Nano. 2008;2:2401-2409.

Alvarez SD, Derfus AM, Schwartz MP, Bhatia SN, Sailor MJ. The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials. 2009;30:26-34.

Palestino G, Agarwal V, Aulombard R, Pérez E, Gergely C. Biosensing and protein fluorescence enhancement by functionalized porous silicon devices. Langmuir. 2009;24:13765-71.

Canham L. Color of Porous silicon. In: Canham LT (ed). Handbook of Porous Silicon. Springer, Cham. 2014;255-62.

Prokopowicz M, Przyjazny A. Synthesis of sol-gel mesoporous silica materials providing a slow release of doxorubicin. J Microencapsul. 2007;24:682-701.

Lenza RF, Jones JR, Vasconcelos WL, Hench LL. In vitro release kinetics of proteins from bioactive foams. J Biomed Mater Res A. 2003;67:121-9.

Domb AJ, Gallardo CF, Langer R. Poly (anhydrides) based on aliphatic –aromatic diacids. Macromolecules. 1989;22(8):3200-04.

Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Design, Development and Therapy. 2018;12: 3117-45.

Kupiec K, Konieczka P, Namieśnik J. Characteristics, Chemical Modification Processes as well as the Application of Silica and its Modified Forms. Critical Reviews in Analytical Chemistry. 2009;39(2):60-9.