DOI: http://dx.doi.org/10.18203/2319-2003.ijbcp20212389

Marine natural products: the new generation of pharmacotherapeutics

Rajeev Goel, Binny Mahendru, Tushar Saini

Abstract


The biomedical potential of the sea has gone largely unexplored so far, despite the fact that it covers three quarters of the planet surface and the fact that life on Earth originated from the sea. However, with the arrival of the professional deep sea divers, the marine researchers have gained access to all sorts of marine creatures like sponges, corals, sea urchins, sea squirts, hydroids, sea anemones, fishes and mollusks as well as to varied types of sea plants including algae and the other micro-organisms embedded in the sea bed. The biomedical scientists are exploiting these all to extract marine natural products (MNPs) having pharmacological properties that may one day cure long list of illnesses varying from bacterial infections to cancer, Alzheimer's and AIDS and is the focus of this review article.


Keywords


Marine organisms, Marine natural products, Therapeutics and human diseases

Full Text:

PDF

References


Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;(2):303-6.

Malve H. Exploring the ocean for new drug developments: marine pharmacology. J Pharm Bioallied Sci. 2016;8(2):83-91.

Carney JR, Yoshida WY, Kiheisterones SPJ. New cytotoxic steroids from a Maui sponge. J Org Chem. 1992;57(24):6637-40.

Zheng LH, Wang YJ, Sheng J, Wang F, Zheng Y, Lin XK, et al. Antitumor peptides from marine organisms. Mar Drug. 2011;9(10):1840-59.

Calcabrini C, Catanzaro E, Bishayee A, Turrini E, Fimognari C. Marine sponge natural products with anticancer potential: an updated review. Mar Drugs. 2017;15(10):310.

Spira AI, Iannotti NO, Neubauer M, Ronald NG, Yanagihara H. A phase II study of eribulin mesylate (E7389) in patients with advanced previously treated non-small-cell lung cancer. Clin Lung Cancer. 2012;13(1):31-8.

Jain S, Cigler T. Eribulin mesylate in the treatment of metastatic breast cancer. Biologics. 2012;6:21-9.

Bai R, Nguyen TL, Burnett JC, Atasoylu O, Munro MHG , Pettit GR, et al. Interactions of Halichondrin B and Eribulin with Tubulin. J Chem Informat Model. 2011;51(6):1393-404.

Smith AB, Freeze BS. Discodermolide: total synthesis, construction of novel analogues, and biological evaluation. Tetrahedron. 2007;64(2):261-98.

Souza MVND. Discodermolid: a marine natural product against cancer. Scientif World J. 2004;4:415-36.

Murti Y, Agrawal T. Marine derived pharmaceuticals Development of natural health products from marine biodiversity. Int J Chem Tech Research. 2010;2(4):2198-217.

Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod. 2004;67(8):1216-38.

Huang RM, Chen YN, Zeng Z, Gao CH, Su X, Peng Y. Marine nucleosides: structure, bioactivity, synthesis and biosynthesis. Mar Drugs. 2014;12(12):5817-38.

Schwartsmann G, Rocha ABD, Jimeno J, Berlink RGS. Marine organisms as a source of new anticancer agents. Lancet Oncol. 2001;2(4):221-5.

Moraes FC, Muricy G. Taxonomy of Plakortis and Plakinastrella (Demospongiae: Plakinidae) from oceanic islands off north-eastern Brazil, with description of three new species. J Mar Biol Assoc U K. 2003:385-97.

Halim H, Chunhacha P, Suwanborirux K, Chanvorachote P. Anticancer and antimetastatic activities of Renieramycin M, A marine tetra hydroisoquinoline alkaloid, in human non-small cell lung cancer cells. Anticancer Res. 2011;31(1):193-201.

Tommonaro G, Iodice C, AbdEl-Hady FK, Guerriero G, Pejin B. The Mediterranean sponge Dysidea avara as a 40 year inspiration of marine natural product chemists. J Biodivers Endanger Species. 2015;1:1.

Amade P, Charroin C, Baby C, Vacelet J. Antimicrobial activities of marine sponges from the Mediterranean Sea. Marine Biol. 1987;94:271-5.

Ridley CP, Faulkner DJ, Haygood MG. Investigation of Oscillatoria spongeliae-dominated bacterial communities in four Dictyoceratid Sponges. Appl Environ Microbiol. 2005;71(11):7366-75.

Ebada SS, Proksh P. The Chemistry of Marine Sponges. Handbook of Marine Natural Products. Switzerland: Springer Science; 2012: 191-293.

Tiwari K, Gupta RK. Rare actinomycetes: a potential storehouse for novel antibiotics. Critic Rev Biotechnol. 2012;32(2):108-32.

Jensen PR, Moore BS, Fenical W. The marine Actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep. 2015;32(5):738-51.

Macherla VR, Mitchell SS, Manam RR, Reed KA, Chao TH, Nicholson B, et al. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem. 2005;48(11):3684-7.

Jayaprakashvel M. Therapeutically active biomolecules from marine actinomycetes. J Mod Biotechnol. 2012;1(1):1-7.

Popov AM, Stekhova SI, Utkina NK, Rebachuk NM. Antimicrobial and cytotoxic activity of sesquiterpenequinones and brominated diphenyl ethers isolated from marine sponges. Pharm Chem. 1999;33:15-6.

Gennari C, Castoldi D, Sharon O. Natural products with taxol-like anti-tumor activity: synthetic approaches to eleutherobin and dictyostatin. Pure Applied Chem. 2007;79(2):173-80,

Ehrlich H, Etnoyer P, Litvinov SD, Olennikova MM, Domaschke H, Hanke T, et al. Biomaterial structure in deep-sea bamboo coral (Anthozoa: Gorgonacea: Isididae): perspectives for the development of bone implants and templates for tissue engineering. Materialwissenschaft und Werkstofftechnik. 2006;37(6):552-7.

Louisia S, Stromboni M, Meunier A, Sedel L, Petite H. Coral grafting supplemented with bone marrow. J Bone Joint Surg. 1999;81(4):719-24.

Grado GFD, Keller L, Idoux-Gillet Y, Wagner Q, Musset AM, Benkirane-Jessel N, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819.

Ben-Nissan B. Discovery and development of marine biomaterials. In: Kim S, eds. Functional Marine Biomaterials. Cambridge, United Kingdon: Woodhead Publishing; 2015: 3-32.

Look SA, Fenical W, Jacobs RS, Clardy J. The pseudopterosins: Anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc Nati Acad Sci U S A. 1986;83:6238-40

Cho J, Kim Y. Sharks: a potential source of antiangiogenic factors and tumor treatments. Mar Biotechnol. 2002;4:521-5.

Lu C, Lee JJ, Komaki R, Herbst RS, Feng L, Evans WK, et al. With or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. J Natl Cancer Inst. 2010;102(12):859-65.

D’Incalci M, Jimeno J. Preclinical and clinical results with the natural marine product ET-743. Expert Opin Investig. 2003;2(11):1843-53.

Schmitt T, Keller E, Dietrich S, Wuchter P, Ho AD, Egerer G. Trabectedin for metastatic soft tissue sarcoma: a retrospective single center analysis. Mar Drugs. 2010;8(10):2647-58.

Erba E, Bergamaschi D, Ronzoni S, Faircloth GT, Bassano L, Damia G. Ecteinascidin-743 (ET-743), a natural marine compound, with a unique mechanism of action. Euro J Cancer. 2001;37(1):97-105.

Palanisamy SK, Rajendran NM, Marino A. Natural products diversity of marine Ascidians (Tunicates; Ascidiaacea) and successful drugs in clinical developments. Nat Prod Bioprospect. 2017;7(1);1-11.

Prashanth JR, Dutertre S, Lewis RJ. Pharmacology of predatory and defensive venom peptides in cone snails. J Molecul Biosyst. 2017;12:2453-62.

Safavi-Hemami H, Brogan SE, Olivera BM. Pain therapeutics from cone snail venoms: from ziconotide to novel non-opioid pathways. J Proteomics. 2019;190:12-20.

Detert JA, Adams EL, Lescher JD, Lyons JA, Moyer JR. Pretreatment with apoaequorin protects hippocampal CA1 neurons from oxygen-glucose deprivation. PLoS One. 2013;8(11):79002.

Lee Y, Phat C, Hong SC. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides. 2017;95:94-105.

Watters DJ. Ascidian toxins with potential for drug development. Mar Drugs. 2018;16(5):162.

Benchamas G, Huang G, Huang S, Huang H. Preparation and biological activities of chitosan oligosaccharides. Trends Food Sci Technol J. 2021;107:38-44.

Li CP, Prescott B, Eddy B, Caldes G, Green WR, Martino EC, et al. Antiviral activity of paolins from clams. Annals New York Aca Sci. 1965;130(1):374-82

Li CP, Prescott B, Martino C, Liu OC. Antineoplastic activity of Clam Liver extract. Nature. 1968;219(5159);1163-4.

Waibel KH, Brian H, Moore M, Bonnie W, Gomez R. Safety of chitosan bandages in shellfish allergic patients. Mill Med. 2011;176(10):1153-6.

Wargasetia TL, Wido D. Mechanisms of cancer cell killing by sea cucumber-derived compounds. Invest New Drugs. 2017;35(6):820-6.

PereiraPint E, Rodrigue SM, Gouveia N, Timóteo V, Costa PR. Tetrodotoxin and saxitoxin in two native species of puffer fish, Sphoeroides marmoratus and Lagocephalus lagocephalus from NE Atlantic Ocean (Madeira Island, Portugal). Mar Environment Res. 2019;15:1047.

Cusick KD, Sayler GR. An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Mar Drugs. 2013;11(4):991-1018.

Puilingi CG, Kudo Y, Cho Y, Konoki, Yamashita MY. Tetrodotoxin and its analogues in the pufferfish Arothron hispidus and A. nigropunctatus from the Solomon Islands: a comparison of their toxin profiles with the same species from Okinawa, Japan. Toxins (Basel). 2015;7(9):3436-54.

Liu J, Li XW, Guo YW. Recent advances in the isolation, synthesis and biological activity of marine guanidine alkaloids. Marine Drugs. 2017;15(10):324.

Klein-Júnior LC, Santin JR, Niero R, deAndrade SF, Filho VC. The therapeutic lead potential of metabolites obtained from natural sources for the treatment of peptic ulcer. Phytochem Rev. 2011;11:567-616.

Martínez-Núñez MA, López VELY. Nonribosomal peptides synthetases and their applications in industry. Sustain Chem Process. 2016;4:13.

Riyanti R, Widada J, Radjasa OK. Isolation and screening of antimicrobial producing-actinomycetes symbionts in Nudibranch. Indones J Biotechnol. 2009;14(1).

Thomas ATR, Kavlekar DP, LokaBharathi PA. Marine drugs from sponge-microbe association-a review. Mar Drugs. 2010;8(4):1417-68.

Dyshlovoy SA, Kudryashova EK, Kaune M, Makarieva TN, Shubina LK, Busenbender T, et al. Urupocidin C: a new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting. Scientif Rep. 2020;10(9764):66428-95.

Dyshlovoy SA, Tabakmakher KM, Hauschild, J, Shchekaleva RK, Otte K, Guzii AG. Guanidine alkaloids from the marine sponge Monanchora pulchra show cytotoxic properties and prevent EGF-induced neoplastic transformation in vitro. Mar Drugs. 2016;14(7):133.

Dyshlovoy SA, Kudryashova EK, Kaune M, Tatyana M, Makarieva N, Shubina LK, et al. Urupocidin C: a new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting. Sci Res. 2020;10(1):9764.

Cheung FRC, Ng TB, Wong JH, Chen Y, Chan W. Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol. 2016;100(4):1645-66.

Welch L. Sea life benefits us in more ways than you imagine. Alaska J Commerce. 2005 Nov 26. Available at: https://www.alaskajournal.com. Accessed on 20th March 2021.

Shikov AN, Pozharitskaya ON, Krishtopina AS. Naphthoquinone pigments from sea urchins: chemistry and pharmacology. Phytochem Rev. 2018;17(2):509-34.

Karthigayan S, Balasubashini MS, Sengottuvelan M, Balasubramanian T. Anticancer principles from salivary gland extract of Octopus ageina. Int J Cancer Res. 2006;2(3):242-52.

Jinson ST, Liebich J, Senft SL, Mathger LY. Retinal specializations and visual ecology in an animal with an extremely elaborate pupil shape: the little skate Leucoraja (Raja) erinacea Mitchell 1825. J Comparative Neurol. 2018;526(12):1962-77.

Arkansas Democrat Gazette. Fact sheet: New fish discoveries could lead to medical breakthroughs, 2019. Available at: https://www.arkansasonline.com/news/2019/apr/21/new-fish-discoveries-could-lead-medical-breakthrou/?threerivers. Accessed on 14 April 2021.

Rome LC. Design and structures of superfast muscles, new insights to the physiology of skeletal muscles. Ann Rev Physiol. 2006;68:193-221.

Szatkowski ML, Westfall MV, Gomez CA, Wahr PA, Daniel E, DelloRusso MC. In vivo acceleration of heart relaxation performance by parvalbumin gene delivery. J Clin Invest. 2001;107(2):191-8.

Voskoboynik A, Weissman IL. Botryllus schlosseri, an emerging model for the study of aging, stem cells, and mechanisms of regeneration. Invertebr Reprod Dev. 2015;59(1):33-8.

Metz EC, Kane RE, Yanagimachi H, Parlumbi SR. Fertilization between closely related sea urchins is blocked by incompatibilities during sperm-egg attachment and early stages of fusion. Biol Bulletin. 1994;187(1):23-34.

Carlos J. Marine natural products in medicinal chemistry. Med Chem Lett. 2018;9(10):959-61.